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Machine learning is often employed in appointment scheduling to identify the patients with the greatest no-

show risk, so as to schedule them into overbooked slots, and thereby maximize the clinic performance, as 

measured by a weighted sum of all patients’ waiting time and the provider’s overtime and idle time. 

However, if the patients with the greatest no-show risk belong to the same demographic group, then that 

demographic group will be scheduled in overbooked slots disproportionately to the general population. This 

is problematic because patients scheduled in those slots tend to have a worse service experience than the 

other patients, as measured by the time they spend in the waiting room. Such negative experience may 

decrease patient’s engagement and, in turn, further increase no-shows. Motivated by the real-world case of 

a large specialty clinic whose black patients have a higher no-show probability than non-black patients, we 

demonstrate that combining machine learning with scheduling optimization causes racial disparity in terms 

of patient waiting time. Our solution to eliminate this disparity while maintaining the benefits derived from 

machine learning consists of explicitly including the objective of minimizing racial disparity. We validate 

our solution method both on simulated data and real-world data, and find that racial disparity can be 

completely eliminated with no significant increase in scheduling cost when compared to the traditional 

predictive overbooking framework.  
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1. Introduction 

Providing affordable, inclusive, and timely access to quality healthcare has become one of the most pressing 

issues in our society (Dai and Tayur, 2019). Appointment scheduling in medical offices is one of the most 

common ways to access medical services, and has attracted considerable attention from the management 

science research community (Ahmadi-Javid et al. 2017).   

Patient no-shows represent a major challenge for effective appointment scheduling at outpatient 

medical clinics, because they reduce provider utilization, ultimately resulting in delayed patient access to 

health care.  A popular way to counteract no-shows is to overbook appointments.  Although overbooking 

increases the expected number of showing patients and decreases idle time, it also introduces the 

undesirable effects of patient waiting time, incurred when a patient’s visit starts late because of 

overcrowding, and provider overtime, incurred if the provider needs to work beyond the nominal end of the 

clinic session in order to finish seeing all patients.  In a typical scheduling environment, clinics are interested 

in scheduling a given set of patients into their appointment slots, so as to minimize a weighted sum of the 

provider’s idle time and overtime and the patients’ waiting time. 

Recent work in appointment scheduling indicates that clinic costs due to idle time, overtime, and 

patients’ waiting time can be substantially reduced by combining machine learning and optimization into a 

framework called “predictive overbooking” (Figure 1).  The predictive overbooking framework consists of 

a predictive model and an optimization model. Given a set of � appointment requests (�� , �� , … , ��), a 

predictive model predicts their individual probabilities of show (��, ��, … , ��), and an optimization model 

is subsequently used to optimally schedule the appointment requests based upon the estimated probabilities. 

The objective of the optimization model is to minimize a weighted sum of patients’ waiting time and 

provider overtime and idle time.   

 

 

Figure 1:  The predictive overbooking framework in a case with four appointment requests. 
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Zacharias and Pinedo (2014) noted that any schedule can be viewed as “a concatenation of alternating 

vertical and horizontal segments”, where a vertical segment 	 is an overbooked slot (graphically depicted 

with a vertical stack of slots) and a horizontal segment ℎ is a sequence of slots that are not overbooked (see 

Figure 2).  Throughout the paper, we use the term “segment” to denote a pair of vertical and horizontal 

segments. 

 

Figure 2:  A segment in a schedule is made of a vertical segment 	 and a horizontal segment ℎ 

 

If it is assumed that all patients have the same medical priority, Zacharias and Pinedo (2014) proved 

that within a segment, it is optimal to schedule patients in increasing order of their show probability.  In 

reference to Figure 2, this means that patients 	� to 	� all have a lower (i.e., not higher) show probability 

than patient ℎ�, and that ℎ� has a lower show probability than ℎ�, who has a lower probability than ℎ�, and 

so on until ℎ
, who has the highest show probability among the patients in this segment.  

While this scheduling strategy is optimal from a pure cost-minimization point of view, it may have 

unintended ethical consequences.  As the sociologist Ruha Benjamin puts it, “the road to inequity is paved 

with technical fixes” in the name of achieving “objectivity, efficiency, profitability, and progress” 

(Benjamin, 2019).  We will prove that patients scheduled in an overbooked appointment slot (i.e., 	� to 	� 

in Figure 2) or in the immediately following slot (i.e., ℎ�) tend to suffer a longer waiting time than patients 

scheduled in the rest of the horizontal segment (i.e., ℎ� to ℎ
).  Thus, if no-show behavior is correlated with 

the patients’ race, then overbooking patients based upon their predicted show probabilities will lead to one 

racial group being disproportionately scheduled toward the left end of each segment, thereby facing longer 

waiting times than the other groups.   

Although a large number of studies have found that race is correlated with no-show probability (see the 

survey by Dantas et al. 2018), no existing study has recognized that, because of this, the predictive 

overbooking framework may result in significantly longer waiting times for a racial group.  This disparity 

in waiting time for black patients – who oftentimes are the patient class with the greatest probability of no-

show – is especially unjust due to the evidence that those patients generally have inferior access to 

healthcare, receive poorer quality care, and experience worse healthcare outcomes (Centers for Disease 

Control, 2013).   

While it is beyond the scope of this paper to offer an extensive discussion of the underlying ethical 

argument for correcting disparate racial impacts, it should be pointed out that it would be fundamentally 
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unethical to punish black patients for their lower show rate.  This is because academic studies have shown 

that race is highly correlated with socioeconomic obstacles deeply rooted in historical racial discrimination 

which make black patients less likely to be able to make it to appointments than white patients (Williams 

et al. 2010).  Therefore, any suggestion that patients with a high risk of no-show “deserve” to be given 

inferior scheduling slots would in essence be penalizing black people for the discrimination and 

socioeconomic conditions that they have historically suffered.   

Motivated by the data set of an outpatient clinic whose black patients have a higher no-show rate than 

white patients, in this paper we assess the disparate impact that the predictive overbooking framework has 

on the waiting times of the different racial groups, and provide a solution method to remove racial disparity 

with modest effects on clinic costs.   

We first develop analytical insights to prove that the predictive overbooking framework tend to result 

in longer waiting times for the racial group at higher risk of no-show; we also prove that this racial disparity 

is directly proportional to the prediction performance.  Second, we develop an appointment scheduling 

methodology to eliminate racial disparity in waiting times by explicitly taking into account the racial groups 

in the objective function.  Instead of minimizing the waiting time of all patients, our new objective 

minimizes the waiting time of the racial group that waits the longest.  Our results suggest that doing so has 

the potential of completely removing racial disparity at a modest increase in scheduling cost.   

 

2. Literature Review 

There are three topic areas which we will review for this paper. The first area is the emerging subject of 

algorithmic bias in health care.  Gianfrancesco et al. (2018) express the “concern that biases and deficiencies 

in the data used by machine learning algorithms may contribute to socioeconomic disparities in health care”.  

Rajkomar et al. (2018) echo this concern and provide the recommendation to seek to obtain “equal 

outcome”, and not just equal prediction performance across the groups. To do this, they also recommend 

to take into consideration the membership to a racial group explicitly instead of adopting “the commonly 

discussed fairness principle of unawareness which states that a model should not use the membership of the 

group as a feature”.   

The second area of research includes empirical studies in appointment scheduling.  It is well known 

that race and ethnicity are correlated with the probability of patient no-shows.  After surveying 105 

empirical studies on no-shows, Dantas et al. (2018) concluded that “minority groups were consistently 

associated with increased no-show, but not surprisingly different groups were considered minorities in 

different countries (e.g., Hispanics and Afro-Americans in the United States)”.   

The third area of research includes studies that developed methodologies to schedule patients based on 

their individual no-show probabilities.  Li et al. (2019), Samorani and LaGanga (2015), Srinivas and 

Ravindran (2018), Zacharias and Pinedo (2014), Samorani and Harris (2019) are some examples of a 
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growing body of literature that promotes the predictive overbooking procedure depicted in Figure 1.  The 

goal of these papers is to minimize the clinic cost (typically, the patients’ waiting time and the provider’s 

overtime and idle time) using individual no-show probabilities.  However, despite the presence of a large 

body of work in algorithmic bias in health care and the empirical evidence that race and no-show 

probabilities are correlated, these studies fail to recognize that predictive overbooking may result in racially 

biased decisions.   

To the best of our knowledge, our work is the first one to measure and address the racial disparity that 

takes place in appointment scheduling.   

 

2. Clinic Model, Assumptions, and Properties 

2.1. Clinic Model 

We consider an outpatient clinic where one provider sees patients sequentially during the clinic day.  The 

input consists of a set of � appointment requests with individual show probabilities �� (� = 1, … , �).  We 

typically utilize show probabilities in our model, but occasionally utilize the no-show probabilities, (1 −
��).  The scheduling problem consists of assigning each appointment request to one of � appointment slots.  

Each patient belongs to one of two racial groups, �� or ��.  Throughout the paper, group �� denotes the 

group with the greater risk of no-shows.  All of our proofs are valid for any number of racial groups, but 

the current work focuses on the two-group case. 

If � > �, there is overbooking, that is, at least one slot will be assigned to more than one appointment 

request.  We assume that all patients who show up are punctual, and that the provider sequentially sees the 

patients who show up; the time taken for each appointment is assumed constant and equal to the length of 

one appointment slot (this assumption is relaxed in Appendix C).   

If no patient is present at the beginning of a slot, the provider stays idle for the duration of that slot.  If 

more than one patient is present at the beginning of a slot, the provider sees the one with the earliest 

scheduled time, while all others wait for at least the duration of the slot.  In the case of ties (e.g., if two 

patients overbooked in the same slot show up), the provider selects a patient at random among those sharing 

the earliest scheduled time.  This way of breaking ties reflects the fact that patients typically check in 

sequentially even if they arrive at the same time, and are in the order they are scheduled.  If there are patients 

present at the end of the regular clinic session, the provider will see them sequentially in overtime (i.e., slot 

� + 1, � + 2, etc). 

 

2.2. The Traditional Objective Function (TOF) 

We now introduce the traditional objective function (TOF) for the appointment scheduling problem.  The 

TOF objective is to minimize a weighted sum of the patients’ expected waiting time and the provider’s 

expected overtime and idle time.  Patient � incurs a waiting time cost if his/her appointment starts late, at a 
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rate of � for every time unit of delay; idle time cost is incurred at a rate of � for every time unit of idle 

time, whereas overtime cost is incurred whenever the provider finishes seeing the patients after the nominal 

end time of the clinic session (i.e., after � time units from the start), at a rate of � for every time unit of 

overtime.  Without loss of generality, we fix the length of a time unit to the length of one appointment slot, 

and we fix the waiting time cost to � = 1.  The TOF is as follows: 

 

��� = min  !"#$%& = min'∑ )� ∙  !+%�&,��-� + � ∙  !�%& + � ∙  !#%&.,             (1) 

 

where +%� is the waiting time experienced by patient � and �% and #% are the provider’s idle tme and 

overtime, respectively.   !∙& represents the expected value.  When a patient does not show up, his/her 

waiting time is zero.   

 

2.3. Analytical Connection between TOF and Racial Disparity 

We now articulate why TOF is likely to lead to one racial group experiencing waiting times longer than 

another.  First, Zacharias and Pinedo (2014)’s Corollary 2 proved that, in order to minimize TOF, within 

each schedule segment it is optimal to schedule the patients in increasing order of their show probability, 

with the patients at greatest risk of no-show scheduled in the vertical segment.  Now we show that the 

patients at greatest risk of no-show are also those who tend to experience the longest waiting times.  We 

first define a patient’s “conditional waiting time” (CWT) as his/her waiting time conditional to showing up.  

The CWT is an important metric in this study, because any disparity between patients is assessed by 

measuring the waiting times of the patients that show up.  All proofs are in Appendix A. 

 

PROPOSITION 1: If � and / are two patients scheduled in an overbooked slot (vertical segment) and � has 

a lower show probability than /, then � has a longer CWT than /. 

 

PROPOSITION 2: If � and / are two patients scheduled, respectively, in slots % and 0 (0 > %) of a horizontal 

segment, then the �’s CWT is greater than or equal to /’s CWT. 

 

The two propositions above show that the patients at highest risk of no-show are also those who tend 

to experience the longest waiting time within a vertical segment and within a horizontal segment.  Now, we 

find sufficient conditions for which a patient scheduled in a vertical segment waits longer than a patient 

scheduled in the next slot.   

 

LEMMA 1: A showing patient � scheduled in an overbooked slot expects to wait longer than any patient 

scheduled in the slot right after if 
12
� + �� ≤ 1, where �� is patient �’s show probability and $4 is the number 
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of expected shows (conditional to observing at least one show) among all patients in the overbooked slot 

except patient �. 
 

To generate easily interpretable insights, we reformulate Lemma 1 in the cases where the vertical 

segment contains two or three patients (i.e., a slot is at most triple-booked), which are the cases most 

commonly found in practice: 

 

PROPOSITION 3 (double booking): A showing patient � scheduled in slot % with one other patient, expects 

to wait longer than any patient scheduled in slot % + 1, if s/he has a show probability �� < 0.5.   

 

PROPOSITION 4 (triple booking): A showing patient � scheduled in slot % with two other patients whose 

show probabilities are �� and ��, expects to wait longer than any patient scheduled in slot % + 1, if s/he 

has a show probability �� ≤ 564578�5657�564�578�5657. 

 

Zacharias and Pinedo (2014)’s proofs, together with our Propositions 2, 3, and 4 suggest that the 

patients with very low show probabilities, who usually belong to ��, tend to be overbooked and, when they 

show up, end up waiting the longest.  We now show that if a predictive model is used to predict no-shows, 

then the better the prediction performance, the more likely it is for �� patients to be overbooked.  Limited 

to this proof, we consider the simplified case of a binary classifier, whose predictions are binary show 

outcomes.   

 

PROPOSITION 5: If a binary classifier is used to predict the patients’ show probabilities and TOF is used 

to schedule the appointments, then increasing its sensitivity or specificity will result in a larger proportion 

of �� customers to be overbooked. 

 

We leave to future work the extension of this proof to the case where the classifier provides show 

probabilities instead of binary show outcomes.   

In this section, we analytically showed that minimizing TOF, when coupled with machine learning, 

will disproportionately overbook patients from ��.  The lower �� patients’ show probability, the more likely 

that they will wait longer than �� patients.  Next, we will develop a new objective function that attempts to 

minimize this racial disparity. 
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3. The Unbiased Objective Function (UOF) 

In this section, we develop an alternative objective function, the Unbiased Objective Function (UOF), 

whose goal is to strike a balance between minimizing the clinic cost (as TOF does) and minimizing racial 

disparity between the groups. 

First, in order to compare the waiting times experienced by different racial groups, we need to define 

the expected waiting time of a group of patients.  Defining it as the sum of the individual patients’ expected 

waiting times (as in (1)) is unsuitable for the task of comparing the waiting time suffered by different patient 

groups of potentially different cardinalities, because computing the sum will penalize the least numerous 

group.  Thus, given 9 groups (��, ��,…, �:),we compute the expected waiting time of group �; as: 

 

 <=;> = ∑ ?!@AB&B∈DE?<#1GH@1 �
 JE> , K ∈ L1,2, … , 9M                (2) 

 

where  !+%�& is the expected waiting time experienced by patient �, �; contains the indices of the patients 

belonging to group �;, and  <#$ℎ#+$ �N �;> is the expected number of showing patients in �;.  Although 

there are other ways to compute a group’s waiting time (see Appendix B), this formulation is better aligned 

with computing the average waiting time among the showing patients of that group.  As shown in Section 

4, this formulation also has properties that make it possible to efficiently solve the scheduling problem. 

We now turn our attention to developing an objective function which, in addition to minimizing waiting 

time, idle time, and overtime, also minimizes racial disparity.  In the case of only two racial groups, racial 

disparity can be defined as the absolute value of the difference between the expected waiting times of the 

groups.  Explicitly adding a “racial disparity” component to TOF has two problems.  First, we would need 

to decide the “weight” of this new objective in relation to the other three (waiting time, idle time, and 

overtime).  An excessively large weight could lead to undesirable schedules, such as one where all patients 

wait a very long time, but the two groups wait approximately the same time.  Second, it is unclear how to 

define disparity in the case of more than two groups.   

Guided by these considerations, we propose an objective function, which we call “Unbiased Objective 

Function” (UOF), which does not need new parameters and works for any number of racial groups.  Instead 

of minimizing the disparity among groups, UOF minimizes the waiting time of the group waiting the longest 

(i.e., a min-max objective function): 

 

O�� = min)� ∙ =PQR + � ∙  !�%& + � ∙  !#%&,              (3), 

 where 

=PQR =  !#%#%ST $ℎ#+$& max;∈L�,…,:M' <=;>.              (4), 
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Where =PQR is the “scaled” waiting time of the group waiting the longest.  It is scaled because the group’s 

waiting time is multiplied by the expected number of shows among all patients,  !#%#%ST $ℎ#+$&.  Thanks 

to this scaling, =PQR can be interpreted as the sum of all patients’ waiting times, under the assumption that 

all patients’ waiting time is the same as the average waiting time of the group that waits the longest.  Note 

that if there is only one patient group, then the denominator of (2) is equal to  !#%#%ST $ℎ#+$&, and UOF 

reduces to TOF.   

 

4. Analytical Properties of UOF 

We now derive optimality conditions for the appointment scheduling problem with UOF as objective: 

 

PROPOSITION 6: 

(i) Under reasonable conditions1, there exists a schedule which minimizes UOF with no empty 

slots.   

(ii) There exists a schedule which minimizes UOF in which, within each segment, the patients of 

the same racial group are sorted by increasing show probability. 

 

Thanks to these properties, the solution space is dramatically reduced, making it possible to optimize UOF 

efficiently through a complete enumeration procedure. 

 

5. Computational Results  

In this section, we generate a large number of scheduling problems using different parameter combinations, 

find the optimal schedules that minimize TOF and UOF, and compare their quality in terms of cost and of 

racial disparity. 

The scheduling problems are generated as follows.  A set of � appointment requests is generated by 

assuming that each request has a probability of 50% to belong to either group �� or ��.  The average show 

probability of �� is set to �� = W − X, while the average show probability of �� is set to �� = W + X, where 

W is the population show rate and X a parameter.  Depending on their group, the patients’ show probabilities 

are sampled from two beta distributions Y)��, 	, and Y)��, 	,, where 	 is the variance.  We consider the 

following parameter combinations: )�, �, ∈ L)4,2,, )4,3,, )6,4,, )7,5,, )8,6,M, which imply a population 

show rate W of 0.50, 0.75, 0.67, 0.71, and 0.75, respectively; X ∈ L0.05,0.10M; and 	 ∈ L0.05,0.10M.  The 

idle time and overtime cost per time unit are set to twice and eight times the cost of waiting time, 

respectively (i.e., � = 2 and � = 8).  To better interpret the results, we assume that each appointment slot is 

30 minutes. 

 
1 If slots containing more than four expected shows are not allowed.   
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Table 1:  Computational results on simulated scheduling problems. 

        Effect of UOF over TOF 

Parameters 
Schedule 

Cost 

TOF Waiting 

Time in 

minutes 

UOF Waiting 

Time in 

minutes 

Overtime 

(minutes) 

Disparity  

(��  – ��) 

(minutes) 
Disparity Reduction  

Cost 

Increase  

Overtime 

increase 

(minutes) �, � ��, �� 	 TOF UOF ��  ��  ��  ��  TOF UOF TOF UOF 

4,2 0.4,0.6 0.05 4.61 4.64 12.46 9.14 11.82 10.79 9.26 9.17 3.32 1.03 68.98% 0.65% -0.09 

4,2 0.4,0.6 0.1 4.65 4.71 9.89 7.08 9.98 8.6 9.88 9.8 2.81 1.38 50.89% 1.29% -0.08 

4,2 0.45,0.55 0.05 4.66 4.67 12.08 10.48 12.09 11.59 9.3 9.21 1.6 0.5 68.75% 0.21% -0.09 

4,2 0.45,0.55 0.1 4.81 4.86 9.61 8.38 10.01 9.46 10.3 10.21 1.23 0.55 55.28% 1.04% -0.09 

4,3 0.65,0.85 0.05 3.60 3.73 7.47 2.55 7.01 5.47 7.42 7.37 4.92 1.54 68.70% 3.61% -0.05 

4,3 0.65,0.85 0.1 3.48 3.55 5.54 1.28 4.46 2.61 7.65 7.7 4.26 1.85 56.57% 2.01% 0.05 

4,3 0.7,0.8 0.05 4.01 4.09 6.91 4.9 7.02 6.49 8.4 8.34 2.01 0.53 73.63% 2.00% -0.06 

4,3 0.7,0.8 0.1 3.55 3.62 4.74 2.2 4.08 3.37 7.68 7.71 2.54 0.71 72.05% 1.97% 0.03 

6,4 0.57,0.77 0.05 6.15 6.36 13.5 6.68 11 10.38 11.93 11.89 6.82 0.62 90.91% 3.41% -0.04 

6,4 0.57,0.77 0.1 5.52 5.76 8.99 3.51 7.13 6.4 11.62 11.73 5.48 0.73 86.68% 4.35% 0.11 

6,4 0.62,0.72 0.05 6.34 6.45 12.64 8.66 11.07 10.84 12.12 12.06 3.98 0.23 94.22% 1.74% -0.06 

6,4 0.62,0.72 0.1 5.66 5.79 8.27 5.31 6.94 7.09 11.46 11.46 2.96 0.15 94.93% 2.30% 0.00 

7,5 0.61,0.81 0.05 6.52 6.85 12.76 5.11 10.09 9.4 12.49 12.53 7.65 0.69 90.98% 5.06% 0.04 

7,5 0.61,0.81 0.1 5.72 6.01 8.68 2.26 6.16 4.92 11.95 12.22 6.42 1.24 80.69% 5.07% 0.27 

7,5 0.66,0.76 0.05 6.70 6.86 11.72 7.93 10.25 9.85 12.42 12.42 3.79 0.4 89.45% 2.39% 0.00 

7,5 0.66,0.76 0.1 6.10 6.27 7.03 4.17 5.86 5.57 12.67 12.79 2.86 0.29 89.86% 2.79% 0.12 

8,6 0.65,0.85 0.05 6.81 7.22 11.82 4.04 8.95 8.2 13.14 13.4 7.78 0.75 90.36% 6.02% 0.26 

8,6 0.65,0.85 0.1 5.64 5.92 7.89 0.84 5.3 3.23 11.54 11.93 7.05 2.07 70.64% 4.96% 0.39 

8,6 0.7,0.8 0.05 7.18 7.36 10.18 6.24 8.68 8.47 13.8 13.78 3.94 0.21 94.67% 2.51% -0.02 

8,6 0.7,0.8 0.1 5.78 5.97 5.72 2.47 4.74 3.9 11.79 11.91 3.25 0.84 74.15% 3.29% 0.12 

           Average 78.12% 2.83% 0.04 
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We generated 200 random problems for each parameter combination, and we solved them using TOF 

and UOF.  For each parameter combination, Table 1 reports the average performance obtained by TOF and 

UOF on the 200 problem instances generated under that parameter combination.  When the schedule is 

generated by optimizing TOF, the waiting time incurred by �� is always longer than that incurred by ��; 

the column “Disparity” reports their difference.  In the schedule found by optimizing UOF, ��’s waiting 

time generally decreases, while ��’s increases so that the two groups roughly wait the same and the disparity 

decreases by 78.12% on average.  The overtime is generally almost unaffected, while the cost increases by 

2.83% on average.   

Now that we have established that UOF can potentially reduce racial disparity across a large set of 

parameter combinations with a small impact on cost, we turn our attention to a real-world example.   

 

6. Case Study on Real-World Data 

In this section, we implement the predictive overbooking framework (Figure 1) using the data set from an 

existing outpatient clinic.   

 

6.1. Predictive Model 

The first step in the implementation of the predictive overbooking framework is to build a predictive model 

to estimate the show probabilities of a set of input appointment requests.   

The data set considered in this study comes from a large specialty clinic in the East Coast.  It contains 

approximately 40,000 appointments made over three years by 13,000 patients, most of whom identify 

themselves as “White” or “Black”.  The data set has one entry for each appointment, and includes 

information on the appointment as well as on the patient. The variables are listed below.  

The dependent variable of the predictive model is a binary indicator of show.  The population show 

rate is 73.4%, but there are large differences depending on the race.  Table 2 reports some summary statistics 

by race. 

Table 2: Summary statistics by race 

 Rel. Frequency Show rate 

White 55.8% 78.1% 

Black 39.4% 66.1% 

Asian 1.3% 82.7% 

Other 3.6% 75.5% 

 

Analyzing further, there is also a difference in show probability when breaking down the show rates 

based upon other socio-economic factors such as employment status and marital status.  The show rate is 
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66.2% among unemployed patients and 77.1% among patients with a full-time job; but the unemployment 

rate is higher among black patients (49.2%) than among white patients (30.4%).  Similarly, the show rate 

is 78.6% among married patients and 68.7% among single patients; while only 28.4% of the black patients 

are married, 56.9% of the white patients are. Thus, if scheduling decisions are made based upon show 

probabilities that are calculated from socio-economic variables, a group of patients may still experience 

biased scheduling.  Because the vast majority of patients are either black or white, we consider the two 

racial groups “black” and “non-black”.   

The features describing each appointment are the following:  

1. Appointment-level features: 1.1 The appointment time, 1.2 the lead time to the appointment (the 

time elapsed from the moment when the appointment is requested to the moment when the 

appointment takes place), 1.3 the day of the week, 1.4 the ID of the specific building of the 

appointment; 

2. Patient-level features: 2.1 The patient’s marital status, 2.2 the patient’s employment status, 2.3 the 

patient’s employer, 2.4 the patient’s city name, zip code, and county name, 2.5 the patient’s preferred 

language, 2.6 the distance between the patient’s home and the clinic, 2.7 the patient’s number of past 

no-shows, 2.8 the patient’s past no-show rate, 2.9 the patient’s age, 2.10 the patient’s number of past 

appointments, 2.11 the patient’s past average lateness, 2.12 the patient’s “time in the system” 

(computed as the time elapsed from the moment when the patient was registered to the appointment 

date), 2.13 the diagnosis code, 2.14 the patient’s insurance type. 

Note that race has been excluded from the set of features. To build a predictive model, we proceed as 

follows.  First, we randomly partition the data into a training set (80% of the data) and a test set (20% of 

the data).  The training set is used to derive a predictive model, while the test set is used to evaluate its 

predictive performance and assess any racial disparity. 

We first execute a 10-fold cross validation on the training data set using the following classification 

techniques (all with the default parameters provided by the machine learning package scikit-learn): Random 

Forests, Gaussian Naïve Bayesian Networks, Logistic Regression, AdaBoost, Multilayer Perceptron.  For 

the non-probabilistic classifiers, we derived the no-show probabilities using Platt’s method (Platt, 1999), 

which consists of building a logistic regression model that predicts the binary no-show outcome given the 

no-show score.   

At each iteration of the cross-validation procedure, we recorded the Area Under the receiver operating 

Curve (AUC) and Brier’s score (Brier, 1950), two common metrics to evaluate the prediction quality of 

predicted probabilities.  The former metric measures how well the classification technique ranks the 

appointments from the most likely to the least likely to no-show; the latter metric computes the mean 

squared difference between the predicted probabilities and the real binary outcome; the smaller the Brier’s 
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score, the higher the quality of the probabilities.  We select the classifier with the smallest Brier’s score 

because Samorani and Harris (2019) show that the Brier score is a better indicator of scheduling 

performance than the AUC.  The cross-validated prediction performance is reported in Table 3.   

 

Table 3: Cross-validated AUC and Brier’s score on the training set 

Classification Technique 
All Features 

All features except socio-

economic indicators 

AUC Brier’s score AUC Brier’s score 

Random Forest 0.632 0.187 0.604 0.191 

Gaussian Naïve Bayes 0.644 0.188 0.616 0.190 

Logistic Regression 0.668 0.182 0.636 0.187 

AdaBoost 0.679 0.194 0.655 0.195 

Multi-layer perceptron 0.620 0.192 0.588 0.195 

 

In addition to building predictive models using all features listed above (first two columns), we also 

build models that do not use any socio-economic indicator (features 2.1 to 2.6).  We do this to obtain show 

probabilities uncorrelated to race, thus limiting racial disparity in the schedule.   

For both sets of features, the best-performing technique is Logistic Regression.  So, we build a Logistic 

Regression model using the entire training set, and then use it to predict the show probability of the 

appointments in the test set.  The AUC and Brier’s score obtained on the test set where 0.631 and 0.186 

using the reduced set of features and 0.663 and 0.182 using the complete set of features.  Those values are 

similar to those obtained on the training set, which suggests that there is no overfitting. 

 

6.2. Scheduling Results 

We now employ the show predictions obtained above to optimally schedule appointments.  To this end, we 

simulate a large number of scheduling problems in which � appointment requests need to be scheduled in 

� slots.  Thus, we consider the following combinations: )�, �, ∈ L)6,4,, )7,5,, )8,6,M, which are reasonable 

choices given the show rate of 73.4%.  For each )�, �, combination, we generate 5,000 scheduling 

problems by randomly sampling with replacement � appointment requests from the test set.  We solve each 

problem using strategies that differ in the objective function (TOF or UOF) and in how the show 

probabilities are derived (All features, All features except socio-economic indicators, No feature).  Under 

the “No feature” strategy, no prediction is made and all appointment requests have the same show 

probability, 73.30%, which is training set show rate.   
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For each schedule obtained, we compute cost, overtime, idle time, and waiting times by considering 

the appointments’ actual show outcome from the data.  All schedules are evaluated computing the clinic 

cost through (1), i.e. TOF, because that metric reflects the actual scheduling cost incurred by the clinic. 

Throughout our experiments, we assume again an idle time cost rate of � = 2 and an overtime cost of rate 

of � = 8.  Finally, to better interpret the results, we assume that each appointment slot is 30 minutes. 

 

Table 4:  Results on three sets of problems with different number of appointment requests b and 

appointment slots c.  All times are in minutes.   In bold: statistically significant racial disparity (pvalue < 

0.01).  Underlined: statistically higher cost (pvalue < 0.01) than the cost obtained by the state-of-the-art 

method. 

  TOF with a predictive model based on 

UOF w/ all 

features  

 No feature 

(i.e., without a 

predictive model) 

All features except 

socio-economic 

indicators 

All features  

(state-of-the-art 

method) 

� = 6 

� = 4 

Overtime 22.07 21.61 21.79 21.77 

Idle time 9.11 8.64 8.82 8.81 

Black Patients’ wait 19.09 18.56 18.03 16.63 

Non-black patients’ wait 18.70 17.40 15.88 16.75 

Schedule Cost 9.28 8.97 8.86 8.86 

Racial Disparity 2.09% 6.67% 13.54% 0.72% 

� = 7 

� = 5 

Overtime 17.62 17.56 17.81 17.81 

Idle time 12.55 12.49 12.74 12.74 

Black Patients’ wait 19.50 17.72 16.75 15.43 

Non-black patients’ wait 19.20 16.82 15.14 15.81 

Schedule Cost 9.07 8.72 8.58 8.58 

Racial Disparity 1.56% 5.35% 10.63% 2.46% 

� = 8 

� = 6 

Overtime 14.12 14.36 14.50 14.50 

Idle time 16.67 16.91 17.05 17.05 

Black Patients’ wait 19.20 16.71 15.57 14.52 

Non-black patients’ wait 19.04 16.07 14.11 14.85 

Schedule Cost 8.93 8.54 8.35 8.36 

Racial Disparity 0.84% 3.98% 10.35% 2.27% 

 Average Racial Disparity 1.50% 5.33% 11.51% 1.82% 

 

For each combination of number of patients � and number of slots �, Table 4 reports the average value 

of the provider’s idle time and overtime, the waiting time experienced by the black and non-black patients 
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that show up, the schedule cost, and the racial disparity, computed as the absolute percent difference 

between the waiting times experienced by the two racial groups.   

Limitedly to TOF, our results show that using all features to predict show probabilities (which is the 

“state-of-the-art” method) results in the lowest cost but also in the largest racial disparity (11.51% average 

difference between black and non-black patients’ waiting times).  Unsurprisingly, not using a predictive 

model results in the largest cost and in an insignificant racial disparity, as each patient is assumed to have 

the same show probability.   

Interestingly, eliminating all socio-economic indicators still results in significant racial disparity.  The 

reason lies in the presence of features other than socio-economic indicators, like the patient’s prior no-

shows, which are also correlated with race.   

The last column reports the results obtained by employing all features to predict show probabilities and 

UOF to schedule appointments.  This method obtains schedules whose cost is not different from that 

obtained by the state-of-the-art method and without any significant racial disparity.  Compared to the state-

of-the-art method, UOF removes racial disparity by decreasing the black patients’ waiting time and 

increasing the non-black patients’ waiting time, so that the two quantities become similar.  Appendix C 

reports the results after relaxing the assumption of constant service times.   

 

7. Conclusion 

This paper extends the body of work on predictive overbooking, which aims at scheduling appointments 

based on individual patients’ show probabilities, in order to minimize TOF.  Because the probability of 

show tends to depend on the patients’ racial groups, and because of the structural properties of TOF that 

we uncovered, the traditional predictive overbooking framework disproportionately overbooks the racial 

group of patients with the lower show probability, who consequently experience significantly longer 

waiting times: in our simulations, black patients’ waiting times are 11.51% longer than non-black patients’. 

In turn, negative experiences at a clinic might decrease the level of engagement of patients that are already 

at high risk of no-show, which may result in more no-shows in the future, and more racial disparity.  Our 

results suggest that this disparity is not eliminated by removing socio-economic indicators from the data. 

To reduce the disparity, we develop a different objective function, UOF, which instead of minimizing 

everyone’s waiting time (as TOF does), minimizes the waiting time of the group expected to wait longest.  

This strategy eliminates racial disparity while obtaining a similar clinic cost to that obtained by the 

traditional method.   

Opportunities for future research include developing methodologies for more than two race groups, 

investigating the performance of our method with different racial ratios, allowing the number of patients to 

be a decision variable instead of an exogenous parameter, implementing a sequential scheduling method 
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which schedules appointments as they come in.  Also, while our method aims at minimizing the disparity 

of every single clinic session, perhaps it is sufficient to minimize the average disparity over a longer 

horizon, thereby letting some individual sessions to be affected by disparity. 

Because this is the first work on racial disparity in appointment scheduling, there are also higher-level 

questions that create opportunities for future work.  Does racial disparity manifest itself in ways other than 

longer waiting times (e.g., longer wait from appointment request to appointment day)? And, do these longer 

wait times adversely impact patient outcomes (e.g. patients leave rather than seek care)? Does racial 

disparity affect other aspects of health care access (e.g., the emergency room)?  Should there be “racial 

fairness” or bias considerations that health care providers abide by when scheduling appointments or that 

machine learning developers adhere to when patient scheduling algorithms are created? 
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Appendix A – Proofs 

PROPOSITION 1: If � and / are two patients scheduled in an overbooked slot (vertical segment) and � has 

a lower show probability than /, then � has a longer CWT than / 

Proof: Let � and / be the indices of two patients with show probabilities �� and �d scheduled in slot %, 

respectively, and let �d > ��.  Given that the show outcomes of the other patients are stochastic, let us 

consider one generic realization )e, N,, where e is the actual backlog at the beginning of slot % and N is the 

actual number of shows among all other patients scheduled in %.  We will show that � has a longer CWT 

than / for any realization )e, N,. The CWT of patient � is equal to e plus the number of patients scheduled 

in the vertical segment that are expected to be seen before patient �.  If / shows up, then there are N + 1 

patients different from � who show up in the slot.  Because patients scheduled in the same slot are seen in 

random order, each of these N + 1 patients has a probability of 50% to be seen before patient �.  So, the 

expected number of patients seen before patient � is 

4�

� .  If / does not show up, then there are N patients 

different from � who show up in the slot.  In this case, the expected number of patients seen before patient 

� is 
�.   

 

"+%� = e + �d N + 12 + '1 − �d.N
2 = e + �d2 + N2 

Analogously,  

"+%d = e + �� N + 12 + )1 − ��,N2 = e + ��2 + N2 

Thus, 

"+%d < "+%�∎ 

 

PROPOSITION 2: If � and / are two patients scheduled, respectively, in slots % and 0 (0 > %) of a horizontal 

segment, then the �’s CWT is greater than or equal to /’s CWT  

Proof: Consider a horizontal segment (i.e., no patients are overbooked). Let patient � be scheduled in slot % 

and patient / be scheduled in slot 0, with 0 > %.   Let e be the backlog at the beginning of slot %.  Then, the 

CWT of patient � is equal to e.  In contrast, the CWT of patient / is equal to e only if patient �, as well as 

all of the patients scheduled in slots % + 1, … , 0 − 1 show up; otherwise, it is less than e.  So, the CWT of 

patient / is less than or equal to e ∎ 

 

LEMMA 1: A showing patient � scheduled in an overbooked slot expects to wait longer than any patient 

scheduled in the slot right after if 
12
� + �� ≤ 1, where �� is patient �’s show probability and $4 is the number 
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of expected shows (conditional to observing at least one show) among all patients in the overbooked slot 

except patient �. 
Proof: Let slot % have N patients plus patient �.  Let hi be the probability that none among the N patients 

scheduled in % shows up.  Let $ be the expected number of shows among those N patients and $4 be the 

expected number of shows among those N patients, conditional to at least one of them showing up.  Note 

that $4 ≥ 1 by definition.  Let e be the actual backlog at the beginning of slot % and assume that patient / 

is scheduled in slot % + 1.   We want to find sufficient conditions for which patient �’s CWT, "+%�, is longer 

than patient /’s CWT, "+%d . 

 

Case 1.  Assume e = 0.  The expected CWT of patient �, "+%�, is equal to 0 if no other patient shows up in 

his/her slot; otherwise, it is equal to half of the expected shows among the N patients2: 

"+%� = )1 − hi, $4
2  

If none among the N patients show up, then patient /’s CWT is "+%d = 0.  Otherwise, s/he will wait the 

number of shows exceeding one, because there will be one patient serviced in slot %. If � shows, then $4 

patients will be in backlog, if � does not show, then there will be $4 − 1: 

"+%d = )1 − hi,'��$4 + )1 − ��,)$4 − 1,. 

Next we subtract "+%d  from "+%� to determine when "+%� is at greater than or equal to "+%d .  

'"+%� − "+%d. = )1 − hi, k$4
2 − ��$4 − )1 − ��,)$4 − 1,l ≥ 0 

= 1 − �� + $4
2 ≥ 0 

So, =� ≥ =d if and only if 
12
� + �� ≤ 1 

Case 2.  Assume e ≥ 1.  The expected conditional waiting time of patient �, "+%�, is equal to e if no other 

patient shows up in his/her slot; otherwise, it is equal to e plus half of the expected shows among the N 

patients: 

"+%� = e + )1 − hi, $4
2  

 

 
2 In general, if m patients with show probabilities ��, ��, … , �P are scheduled in the same slot, the expected number 

of patients seen before patient � is ∑ 5nnoB
� .  The reason is that, because patients scheduled in the same slot are seen in a 

random order, each patient in that slot has a 50% chance of being seen before �.   

 Electronic copy available at: https://ssrn.com/abstract=3467047 



20 

 

If none among the N patients show up, then patient /’s waiting time is e − 1 if � doesn’t show up and e if � 
shows up.  Otherwise, s/he will wait e plus the number of shows exceeding one: 

"+%d = hi)1 − ��,)e − 1, + hi��e + )1 − hi,'e + ��$4 + )1 − ��,)$4 − 1,. 

"+%d = hi)1 − ��,)e − 1, + hi��e + )1 − hi,)e + $4 − 1 + ��, 

Next we subtract "+%d  from "+%� to determine when "+%� is at least as great as "+%d .  

 

'"+%� − "+%d. = e + )1 − hi, $4
2 − e − �� − )1 − hi,$4 + 1 ≥ 0 

= 1 − )1 − hi, p$4
2 q − �� ≥ 0 

So, "+%� − "+%d ≥ 0 in case 2 if and only if )1 − hi, r12
� s + �� ≤ 1.   

Conclusion:  "+%� ≥ "+%d  if the conditions relative to both cases are true: 
12
� + �� ≤ 1 and )1 − hi, r12

� s +
�� ≤ 1.  It can be easily seen that if the former inequality is satisfied, so is the latter.  Thus, if 

12
� + �� ≤ 1, 

then "+%� ≥ "+%d  in all cases. ∎ 

 

PROPOSITION 3 (double booking): A showing patient � scheduled in slot % with one other patient, expects 

to wait longer than any patient scheduled in slot % + 1, if s/he has a show probability �� < 0.5. 

 

Proof: Let �HAGtu and �� be the patients double booked in a single slot, and / the patient in slot % + 1.  From 

Lemma 1, patient � waits longer than patient / if 
12
� + �� ≤ 1.  In this case, $4 is equal to one, because that 

is the expected number of shows among a group composed of one patient (patient ”other”) conditional to 

at least one patient showing.  So, patient � waits longer than patient / if �� ≤ 0.5. ∎ 

 

PROPOSITION 4 (triple booking): A showing patient � scheduled in slot % together with two other patients 

whose show probabilities are �� and �� expects to wait longer than any patient scheduled in slot % + 1 if 

s/he has a show probability �� ≤ 564578�5657�564�578�5657. 

Proof:  Let ��, ��, and �� be the patients triple booked in a single slot, and / the patient in the following 

slot.  From Lemma 1, patient � waits longer than patient / if 
12
� + �� ≤ 1.  Note that )1 − hi,$4 = $ (shown 

at the end of this proof for any number of patients N), where hi is the probability that, without considering 

patient �, no patient shows up in the overbooked slot.  So, substituting for $4, 
12
� + �� ≤ 1 is equivalent to 
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$2)1 − hi, + �� − 1 ≤ 0 

$ + 2)1 − hi,�� − 2)1 − hi, ≤ 0 

$ + 2�� − 2��hi − 2 + 2hi ≤ 0 

$ + 2�� − 2 + hi)2 − 2��, ≤ 0 

In addition to patient �, the overbooked slot has two patients with show probabilities �� and ��. The 

probability of neither of them showing up is hi = )1 − ��,)1 − ��,.  Substituting for hi in the inequality 

above: 

 

$ + 2�� − 2 + )1 − ��,)1 − ��,)2 − 2��, ≤ 0 

$ + 2�� − 2 + )1 − �� − �� + ����,)2 − 2��, ≤ 0 

$ + 2�� − 2 + 2 − 2�� − 2�� + 2���� − 2�� + 2���� + 2���� − 2������ ≤ 0 

Because $ is the expected number of shows among patients 1 and 2, $ = �� + ��. Substituting again: 

�� + �� − 2�� − 2�� + 2���� + 2���� + 2���� − 2������ ≤ 0 

−�� − �� + 2���� + 2���� + 2���� − 2������ ≤ 0 

2��)�� + �� − ����, ≤ �� + �� − 2���� 

�� ≤ �� + �� − 2����2�� + 2�� − 2���� ∎ 

Here, we show that )1 − hi,$4 = $.  Let hv the probability of 	 shows among the N patients scheduled in 

a slot.  Then, we can write $4 and hi as follows: 

$4 = ∑ hv ∙ 	
v-�∑ hv
v-�  

hi = 1 − w hv


v-�  

So, )1 − hi,$4 = ∑ hv
v-� ∑ xy ∙vzy{6∑ xyzy{6 = ∑ hv ∙ 	
v-� = $ 

 

PROPOSITION 5: If a binary classifier is used to predict the patients’ show probabilities and TOF is used 

to schedule the appointments, then increasing its sensitivity or specificity will result in a larger proportion 

of �� customers to be overbooked. 

 

Proof: We consider a fixed demand of N� and N� from two groups �� and ��.  Patients are divided into two 

classes � (no-shows) and | (shows).  Patients in �� have a probability }� to belong to �, whereas patients 

in �� have a probability }� (}� < }�) to belong to �.  Among the N� patients in ��, there are N�}� expected 
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to be in � and N�)1 − }�, expected to be in |.  Among the N� patients in ��, there are N�}� expected to 

be in � and N�)1 − }�, expected to be in |.  Figure A1 depicts the patient population. 

 

 

Figure A1:  How the patient population is partitioned 

 

Suppose that we have a binary classifier, whose task is to classify patients into classes � (the positive class, 

no-shows) and | (the negative class, shows).  Because of Lemma 2 from Zacharias and Pinedo (2014), 

vertical segments will be filled with patients predicted in class � first; so patients predicted in class � are 

more likely to be overbooked.  We now show that the among all patients predicted to be �, the proportion 

of �� patients increases if sensitivity or specificity increases. 

The prediction performance of the classifier is represented by a sensitivity ~ and a specificity 1 − Y.  That 

is, the sensitivity, ~, is the probability of correctly classifying a true no-show, whereas Y is the probability 

of misclassifying a true show, thereby predicting him/her to be a no-show.  For each group �� and ��, the 

patients predicted to be in class � include 1) patients within that group that are correctly classified and 2) 

patients within that group in class | that are misclassified.   

Therefore, the number of patients of �� predicted to belong to � is: 

h���)�|��, = N�}�~ + N�)1 − }�,Y 

Similarly, the number of patients of �� predicted to belong to � is: 

h���)�|��, = N�}�~ + N�)1 − }�,Y 

Out of all of the patients predicted to be in �, the proportion of patients belonging to �� is: 

 = h���)�|��,
h���)�|��, + h���)�|��, 

 = N�)}�~ + )1 − }�,Y,
N�)}�~ + )1 − }�,Y, + N�)}�~ + )1 − }�,Y, 

We want to show that increasing the sensitivity, ~, or the specificity, 1 − ~, results in an increase in the 

value of  .  Let us take the derivatives 
�?
�� and 

�?
��. 

X X~ = N�N�Y)}� − }� ,
'N�)}�~ + )1 − }�,Y, + N�)}�~ + )1 − }�,Y,.� 
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X XY = N�N�~)}� − }� ,
'N�)}�~ + )1 − }�,Y, + N�)}�~ + )1 − }�,Y,.� 

 

The derivative 
�?
�� is positive if N�N�Y)}� − }� , > 0, which is true, because }� < }�.  So,   increases with 

the sensitivity.  Similarly, the derivative 
�?
�� is negative, which implies that increasing the specificity 1 − Y 

will increase  . ∎ 

 

PROPOSITION 6: 

(i) Under reasonable conditions3, there exists a schedule which minimizes UOF with no empty 

slots.   

(ii) There exists a schedule which minimizes UOF in which, within each segment, the patients of 

the same racial group are sorted by increasing show probability. 

 

To prove part (i), we must first prove the following Lemma: 

 

(beginning of Lemma) 

Lemma: If an overbooked slot is followed by an empty slot, then moving a patient � to the next slot will 

not increase the objective function of UOF, as long as the expected shows among the patients in groups 

other than �’s group are at most two. 

Proof of Lemma: Let us assume that we have several groups of patients ��, ��, ��,…, scheduled in one 

slot and that the next slot is empty.  We now analyze the effect on the objective of moving patient �, who is 

assumed to belong to �� without loss of generality, to the adjacent empty slot.  Figure A2 depicts the initial 

situation, S1, and the final situation, S2.  

 
3 If slots containing more than four expected shows are not allowed.   
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Figure A2: Depiction of situations S1 and S2 

By moving � to slot 2, the expected number of patients overflowing to the following slots will not change, 

and so this move will not affect the expected waiting time of the following patients, the idle time incurred 

after slot 2, or the overtime.  Note that this move is not going to affect the idle time incurred in slots 1 and 

2 (moving � only changes the slot where idle time may be incurred).  Also, with this move the waiting 

times of groups ��, ��, … scheduled in the first slot may decrease but not increase.  We will now show that 

this move also decreases the waiting time of �’s group, ��, under reasonable assumptions.   

Let N� be the number of patients belonging to �� scheduled in the first slot of S2 (i.e., � is excluded); let N� 

be the number of patients belonging to all other groups scheduled in the first slot of S2.  Let S be the 

expected number of patients that overflow to slot 1 from the preceding slot.  Let e be the expected number 

of patients that overflow from the first slot to the second slot in S2; let =2 + SN� be the sum of the expected 

waiting times of all patients in �� in the first slot of S2, and assume patient � shows with probability ��. So, 

in S1, if � does not show up, then the expected sum of waiting times is equal to =� + SN�; if � shows up, 

the waiting time incurred by all showing patients in �� (whose expected number is N�) increases by 
�
� 

because � has 50% chance of being seen before them, and � also waits S + 
74
6�  (as already seen in the 

proof of Proposition 1).  So, before performing the move, the sum of ��’s waiting times is: 

���t�Hut = )1 − ��,)=2 + SN�, + �� p)=2 + SN�, + N�2 + S + N� + N�2 q 

After moving �, the waiting times incurred by �� are =� + SN� plus the backlog suffered by �, if s/he shows 

up: 

��Q�Atu =  =2 + SN� + �e 

Moving � does not increase the waiting time of �� if and only if: 

��Q�Atu ≤ ���t�Hut
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=2 + SN� + �e ≤ )1 − �,)=2 + SN�, + � p)=2 + SN�, + N�2 + S + N� + N�2 q 

�e ≤ −�)=2 + SN�, + � p)=2 + SN�, + N�2 + S + N� + N�2 q 

�e ≤ � �N�2 + S + N� + N�2 � 

�e ≤ � rN� + N�2 + Ss 

e ≤ N� + N�2 + S 

Note that because the expected shows in the first slot of S2 are N� + N� and one of them is serviced in the 

first slot, the expected number of patients overflowing to the second slot, e, is less than or equal to N� +
N� − 1: 

e ≤ N� + N� − 1 

Thus, a sufficient condition for the move to not increase the objective is: 

N� + N� − 1 ≤ N� + N�2 + S 

N� ≤ 2 + 2S 

Thus, if N� ≤ 2, then moving � to slot 2 will not increase the objective function value. (end of Lemma) 

 

Let us prove (i).  Suppose that the schedule has empty slots.  Let % be the first empty slot. Since there are 

more customers � than slots �, at least another slot has at least two customers.  

Case 1:  Suppose that the schedule prior to % has a slot with more than one customer. Let %i be the last slot 

before % with more than one customer. This implies that slots %i, %i + 1, … , % − 1 have at most one customer 

assigned to them.  Consider the following move: find a group � in slot %i such that the expected number of 

shows belonging to the other group in that slot are at most two (if that slot contains only one group, then � 

is that group); then, take a customer � scheduled in slot %i belonging to group � and all customers assigned 

to slots %i, %i + 1, … , % − 1 and reassign them to slots %i + 1, … , % respectively, in the same order, one after 

the other (i.e., shift these customers one slot to the right in the schedule). The expected number of customers 

at the end of slot % remains the same as before. This implies that the waiting and idle time costs associated 

with slots % + 1, … , � as well as the overtime cost remain the same as before.  The waiting time of patients 

scheduled in slots %i and %i + 1 goes down because of the Lemma above.  The waiting time of patients 

assigned to slots %i + 2, … , % goes down, since every patient faces a lower expected backlog. Therefore, the 

altered schedule results in a not-higher total expected cost.   
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Case 2:  Suppose that the schedule prior to % does not have a slot with more than one customer.  So, there 

is no patient overflowing from slot % − 1 to slot %.  Consider the following altered schedule: move all 

customers assigned to slots % + 1, … , � to the left by one slot (i.e., to slots %, … , � − 1).  The expected cost 

will not increase because the waiting time of all patients stay the same but the overtime may decrease.  After 

this move there is at least one empty slot (slot �) and may be more empty slots between slot % and slot �.  

Redefine % as the first empty slot of the new schedule.  If the schedule prior to % does not have a slot with 

more than one customer, re-execute case 2, obtaining a new schedule of at least the same quality as the 

previous one; else, execute case 1 to obtain a new schedule with no empty slot of at least the same quality 

as the original one.   

 

Let us prove (ii).  Proof: First, consider two patients S and e, both belonging to the same group, and 

scheduled in slots % and 0, respectively of the same horizontal segment (i.e., there is exactly one patient 

scheduled in each slot %, % + 1, … , 0).  Without loss of generality, assume that there is no other patient 

between slots % and 0 that belong to the same group as S and e.  Suppose that S and e’s show probabilities 

are �Q and ��, respectively, and that �Q ≥ ��.  We will show that swapping S and e will decrease the 

expected cost.  Note that the swapping move will not affect the waiting time of the patients scheduled after 

slot 0 or the idle time incurred after slot 0; thus, it will also not affect the overtime.  Also, the swapping 

move will decrease the waiting time experienced by all patients scheduled between S and e, because �� <
�Q, thereby decreasing the expected waiting times of other patient groups.  So, all we need to show is that 

the sum of the waiting times experienced by S and e decreases.  Let #A be the number of expected patients 

overflowing to slot %, and #� the number of expected patients overflowing to slot 0 assuming that S shows 

up, under the current schedule.  Note that #� depends on the show probabilities of the patients scheduled 

between slot % and 0.  The sum of the waiting times experienced by S and e before the move is: 

=�t�Hut = �Q��)#A + #�, + �Q)1 − ��,#A + ��)1 − �Q, max)0, #� − 1, 

The waiting time after the move is: 

=Q�Atu = �Q��)#A + #�, + ��)1 − �Q,#A + �Q)1 − ��, max)0, #� − 1, 

We now show that, 

=Q�Atu ≤ =�t�Hut 

�Q��)#A + #�, + ��)1 − �Q,#A + �Q)1 − ��, max)0, #� − 1,
≤ �Q��)#A + #�, + �Q)1 − ��,#A + ��)1 − �Q, max)0, #� − 1, 

��)1 − �Q,#A + �Q)1 − ��, max)0, #� − 1, ≤ �Q)1 − ��,#A + ��)1 − �Q, max)0, #� − 1, 

��#A − �Q��#A + �Q max)0, #� − 1, − �Q�� max)0, #� − 1,
≤ �Q#A − �Q��#A + �� max)0, #� − 1, − �Q�� max)0, #� − 1, 
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��#A + �Q max)0, #� − 1, ≤ �Q#A + �� max)0, #� − 1, 

��)#A − max)0, #� − 1,, ≤ �Q)#A − max)0, #� − 1,, 

True because �� ≤ �Q.   

Second, consider two patients S and e, both belonging to the same group � and scheduled in the same 

segment as follows: S is scheduled in a vertical segment, that is, s/he is scheduled at slot % together with 

other patients (some belonging to group �, and others belonging to other groups); e is scheduled in the 

adjacent horizontal segment, that is, s/he is scheduled at slot 0, and all slots % + 1, % + 2, … , 0 have exactly 

one patient scheduled in them.  Without loss of generality, no patient in slots % + 1, % + 2, … , 0 − 1 belongs 

to group �.  Suppose that S and e’s show probabilities are �Q and ��, respectively, and that �Q ≥ ��.  We 

will show that swapping S and e will decrease the expected cost.  Note that the swapping move will not 

affect the waiting time of the patients scheduled after slot 0; thus, it will also not affect the overtime.  Also, 

the swapping move will decrease the waiting time experienced by all patients scheduled between S and e, 

because �� < �Q, thereby decreasing the expected waiting times of other patients (who may belong to any 

group).  So, all we need to show is that the sum of the waiting times experienced by S and e decreases.  Let 

#A be the number of expected patients overflowing to slot %, NA  the number of expected shows in slot % 

excluding patient S, and #� the number of expected patients overflowing to slot 0 assuming that S shows 

up, under the current schedule.  Note that #� depends on the show probabilities of the patients scheduled 

between slot % and 0.  The sum of the waiting times experienced by S and e before the move is: 

=�t�Hut = �Q�� r#A + NA2 + #�s + �Q)1 − ��, r#A + NA2 s + ��)1 − �Q, max)0, #� − 1, 

The waiting time after the move is: 

=Q�Atu = �Q�� r#A + NA2 + #�s + ��)1 − �Q, r#A + NA2 s + �Q)1 − ��, max)0, #� − 1, 

We now show that, 

=Q�Atu ≤ =�t�Hut 

�Q�� r#A + NA2 + #�s + ��)1 − �Q, r#A + NA2 s + �Q)1 − ��, max)0, #� − 1,
≤ �Q�� r#A + NA2 + #�s + �Q)1 − ��, r#A + NA2 s + ��)1 − �Q, max)0, #� − 1, 

�� r#A + NA2 s + �Q max)0, #� − 1, ≤ �Q r#A + NA2 s + �� max)0, #� − 1, 

�� r#A + NA2 − max)0, #� − 1,s ≤ �Q r#A + NA2 − max)0, #� − 1,s 

True because �� ≤ �Q∎ 
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Appendix B – Alternative Measures of a Groups’ Waiting Time 

Measuring the expected waiting time of a group of patients is not trivial.  Through an example, here we 

show that different measures lead to different conclusions as to which group is expected to wait longer.  

Consider the three-patient schedule illustrated in Figure B1, where two patients from �� are scheduled in 

slot 1 and have 20% probability of showing up, whereas a patient from �� is scheduled in slot 2 and has a 

100% probability of showing up. 

 

Figure B1: An example schedule 

Table B1 lists all possible realizations.  With a probability of 32%, exactly one patient from �� shows up 

(realization 1), in which case we observe one patient in �� and one patient in �� both experiencing a no 

waiting time.  With a probability of 4%, both patients from �� show up (realization 2), in which case we 

observe one patient in �� waiting for one time units and two patient in �� waiting for 0 and 1 time units; in 

this case, the average waiting time within �� is 0.5 and the average waiting time within �� is one.  Lastly, 

with a probability of 64%, no patients from �� shows up (realization 3), in which case we observe one 

patient in �� waiting for zero time units. 

 

Table B1: Observed waits and group-level average waiting time for all realizations 

Realiz. Prob. 
Observed waits Expected Average Waiting time 

Among �� Among �� Among �� Among �� 

1 .32 0 0 0 0 

2 .04 1, 0 1 0.5 1 

3 .64 NA 0 NA 0 

 

Table B2 lists three possible ways to compute the waiting time of a group.   
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Table B2: Different methods for computing group-level waiting times 

Method ��’s waiting time ��’s waiting time 

Sum of waiting times (used in (1)) . 04 × )1 + 0, = .04 . 04 × 1 = .04 

Expected Average Waiting time . 04 × .5 = .02 . 04 × 1 = .04 

Sum of waiting times divided by 

expected shows (used in (2)) 

. 04. 2 + .2 = .1 
. 041 = .04 

 

First, the “sum of waiting times” method consists of using the traditional formulation of waiting time 

used in (1) separately for each group, by computing the sum, weighted by the probability of realization, of 

all waiting times observed in a group.  Using this formulation results in concluding that both groups expect 

to wait the same time: 0.04 time units.  The limitation of this method is that it ignores the difference between 

the cardinalities of the groups, thereby underestimating the waiting time with the smallest expected 

cardinality (�� in our example). 

The second method we analyze consists of computing the sum, weighted by the probability of 

realization, of the patients’ expected waiting time (last two columns of Table B1).  In 4% of the cases, we 

observe that the average waiting time of �� patients is 0.5, which results in a 0.1 expected average waiting 

time.  This method leads to the conclusion that �� patients wait longer.  The limitation of this method is 

that it assumes that not observing patients in a group is equivalent to observing that they wait 0. 

The last method, which we developed in section 4.1, addresses this limitation by dividing the sum of 

the expected waiting times by the number of expected shows in that group.  As explained in section 4.1, 

this method measures the expected wait suffered by a random patient in a group, conditional to showing 

up.  A showing �� patient has a 20% chance of waiting 0.5, which results in a 0.1 expected wait; a showing 

�� patient has a 4% chance of waiting one time unit, which results in an expected wait of one time unit.  

This method leads to the conclusion that �� patients wait longer.   
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Appendix C – Stochastic Service Times 

The computational study of Section 6 was performed under the assumption that service times take a constant 

amount of time equal to 30 minutes (i.e., the length of one appointment slot).  Here, we relax that 

assumption, with the goals of (1) measuring the racial disparity that occurs when service times are 

stochastic, and (2) assessing the merit of our approach in this more realistic case. 

In line with existing work, we assume that service times follow a lognormal distribution whose mean 

is equal to the length of the appointment slot.  We consider the following parameter configurations: 

 Configuration 1:  Average service time = slot length = 20 minutes, coefficient of variation = 0.3 

 Configuration 2:  Average service time = slot length = 30 minutes, coefficient of variation = 0.2 

 Configuration 3:  Average service time = slot length = 60 minutes, coefficient of variation = 0.1 

As in Samorani and Ganguly (2016), we assume that service times have a smaller coefficient of 

variation in clinics with longer service times, so that the probability of taking 10 minutes longer or 10 

minutes shorter than expected is about 20% for 40-minute appointments. 

 

Table C1:  Results on Configuration 1 on three sets of problems with different number of appointment 

requests b and appointment slots c.  All times are in minutes.   In bold: statistically significant racial 

disparity (pvalue < 0.01).  Underlined: statistically higher cost than the cost obtained by UOF trained with 

all features (pvalue < 0.01). 

  TOF with a predictive model based on 

UOF w/ all 

features  

 No feature 

(i.e., without a 

predictive model) 

All features except 

socio-economic 

indicators 

All features  

(state-of-the-art 

method) 

� = 6 

� = 4 

Overtime 17.28 17.06 17.35 17.42 

Idle time 8.63 8.41 8.70 8.78 

Black Patients’ wait 13.84 13.58 13.39 12.27 

Non-black patients’ wait 13.48 12.61 11.66 12.39 

Schedule Cost 10.79 10.53 10.53 10.58 

Racial Disparity 2.67% 7.69% 14.84% 0.98% 

� = 7 

� = 5 

Overtime 14.80 15.05 15.44 15.44 

Idle time 11.42 11.67 12.06 12.06 

Black Patients’ wait 14.40 13.27 12.87 11.59 

Non-black patients’ wait 14.20 12.68 11.70 12.28 

Schedule Cost 10.77 10.53 10.52 10.54 

Racial Disparity 1.41% 4.65% 10.00% 5.95% 
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� = 8 

� = 6 

Overtime 12.77 13.33 13.60 13.62 

Idle time 14.47 15.03 15.30 15.32 

Black Patients’ wait 14.17 12.76 12.22 11.24 

Non-black patients’ wait 14.09 12.43 11.28 11.87 

Schedule Cost 10.76 10.53 10.48 10.50 

Racial Disparity 0.57% 2.65% 8.33% 5.60% 

 Average Racial Disparity 1.55% 5.00% 11.06% 4.18% 

 

Table C2:  Results on Configuration 2 on three sets of problems with different number of appointment 

requests b and appointment slots c.  All times are in minutes.   In bold: statistically significant racial 

disparity (pvalue < 0.01).  Underlined: statistically higher cost than the cost obtained by UOF trained with 

all features (pvalue < 0.01). 

  TOF with a predictive model based on 

UOF w/ all 

features  

 No feature 

(i.e., without a 

predictive model) 

All features except 

socio-economic 

indicators 

All features  

(state-of-the-art 

method) 

� = 6 

� = 4 

Overtime 24.59 24.19 24.56 24.63 

Idle time 11.62 11.23 11.59 11.66 

Black Patients’ wait 20.20 19.77 19.41 17.82 

Non-black patients’ wait 19.72 18.41 16.96 17.99 

Schedule Cost 10.27 9.99 9.95 9.99 

Racial Disparity 2.43% 7.39% 14.45% 0.95% 

� = 7 

� = 5 

Overtime 20.61 20.83 21.32 21.31 

Idle time 15.54 15.76 16.25 16.24 

Black Patients’ wait 20.90 19.17 18.45 16.72 

Non-black patients’ wait 20.62 18.30 16.75 17.56 

Schedule Cost 10.19 9.90 9.86 9.87 

Racial Disparity 1.36% 4.75% 10.15% 5.02% 

� = 8 

� = 6 

Overtime 17.36 18.03 18.32 18.34 

Idle time 19.91 20.58 20.87 20.89 

Black Patients’ wait 20.56 18.32 17.40 16.06 

Non-black patients’ wait 20.44 17.77 15.97 16.79 

Schedule Cost 10.12 9.84 9.75 9.76 

Racial Disparity 0.59% 3.10% 8.95% 4.55% 

 Average Racial Disparity 1.46% 5.08% 11.18% 3.51% 
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Table C3:  Results on Configuration 3 on three sets of problems with different number of appointment 

requests b and appointment slots c.  All times are in minutes.   In bold: statistically significant racial 

disparity (pvalue < 0.01).  Underlined: statistically higher cost than the cost obtained by UOF trained with 

all features (pvalue < 0.01). 

  TOF with a predictive model based on 

UOF w/ all 

features  

 No feature 

(i.e., without a 

predictive model) 

All features except 

socio-economic 

indicators 

All features  

(state-of-the-art 

method) 

� = 6 

� = 4 

Overtime 46.67 45.81 46.35 46.41 

Idle time 20.74 19.88 20.42 20.48 

Black Patients’ wait 39.29 38.33 37.45 34.46 

Non-black patients’ wait 38.43 35.82 32.84 34.75 

Schedule Cost 9.78 9.48 9.41 9.43 

Racial Disparity 2.24% 7.01% 14.04% 0.84% 

� = 7 

� = 5 

Overtime 38.26 38.42 39.16 39.14 

Idle time 28.12 28.28 29.02 29.00 

Black Patients’ wait 40.42 36.91 35.22 32.16 

Non-black patients’ wait 39.85 35.15 31.91 33.39 

Schedule Cost 9.63 9.31 9.22 9.23 

Racial Disparity 1.43% 5.01% 10.37% 3.82% 

� = 8 

� = 6 

Overtime 31.49 32.40 32.83 32.85 

Idle time 36.59 37.50 37.93 37.95 

Black Patients’ wait 39.77 35.03 32.98 30.58 

Non-black patients’ wait 39.50 33.84 30.09 31.65 

Schedule Cost 9.53 9.19 9.05 9.06 

Racial Disparity 0.68% 3.52% 9.60% 3.50% 

 Average Racial Disparity 1.45% 5.18% 11.34% 2.72% 
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